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A method is descr ibed for determining the heat t r ans fe r  coefficient f rom measured t empera -  
tures  in the medium and on a heated flat plate. 

During heating of an infinite plate which has one surface thermal ly  insulated and the other experienc-  
ing heat exchange with the surrounding medium, the heat t ransfer  coefficient can be determined only from 
analysis  of the dynamics of variat ion of the tempera ture  field. 

For  the sake of general i ty we shall assume that the heat t ransfer  coefficient is not constant during 
heating, but is, for example, a function of t ime. We shall take the specific heat and the thermal  conductivity 
of the plate mater ia l  to be constant. 

Under these assumptions the heat conduction equation for an infinite plate and the boundary conditions 
will be as follows: 

c30 (X, Fo) 0 ~ O (X, Fo) 
0 Fo OX ~ , (1) 

00(1, Fo) 
- -  Bi (Fo) [O~ (Fo) - -  @ (1, Fo) l ,  (2)  

OX 

0 0 (0, Fo) == 0. (3) 
OX 

We shall assume that the initial p la te  tempera ture  distribution is, in general ,  nonuniform: 

O (X, 0) = [ (X). (4) 

In the  sys tem of equations (1)-(4)we have to determine the function Bi(Fo) f rom measurement  of t em-  
pera tures  in the medium and on the plate at one or several  points ac ros s  it during the heating. 

The problem can be simplified by varying the medium tempera ture  according to some previously de- 
termined law. For  example, we can maintain unchanged the tempera ture  difference between the heated and 
insulated plate surfaces .  But, in pract ice ,  one cannot maintain such conditions. 

The present  paper  descr ibes  a method for determining Bi(Fo) f rom measured t empera tu res  of the 
medium and the heated surface during heating of the plate, assuming an a rb i t r a ry  variat ion in the medium 
tempera ture  and an a rb i t r a ry  continuous initial tempera ture  distribution, Eq. (4). 

Then, knowing | and | Fo) the function Bi(Fo) can eas f lybe  found f rom Eq. (2) if we know the r e l a -  
t ionbetween a| Fo/0X and | Fo). To determine the lat ter ,  we make use of the fact that the manner  in which 
the derivative with respec t  to X at the pointX = i depends on the surface t empera tu re  is invariant  with r e s -  
pect to the boundary conditions on that surface,  if the initial and final conditions are  unchanged on the other 
surface.  In other words,  for any boundary conditions on the surface X = 1 and the identical initial and 
boundary conditions at X = 0, this dependence will remain  unchanged, i . e . ,  for unchanged boundary condi- 
tions at X = 1 the derivative with respec t  to X and the tempera ture  at  the point X = 1 will always vary  with 
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t ime  so that they sa t i s fy  the s ame  re la t ion.  In the spec ia l  case  of boundary conditions of the th i rd  kind, 
the invar tance  means  that the re la t ion  cons idered  will r e m a i n  unchanged for  any function Bi(Fo), and can 
be found, in pa r t i cu l a r ,  by solving Eq. (1) with conditions (3) and (4) and boundary conditions of the f i r s t  
kind on the sur face  X = 1: 

O (1, Fo) = ~ (Fo). (2') 

(The p roof  of this  is g iven in the Appendix). 

In what follows we shall  unders tand ~p(Fo) in Eq. (2') to be the t e m p e r a t u r e  of the heated sur face  m e a -  
sured  during heating of the pla te .  

We can r e p r e s e n t  the solution of the s y s t e m  (1), (2'), (3), and (4), because  of its l inear i ty ,  in the 
fo rm of the sum of two functions 

O (X, Fo) = O~ (X, Fo) -t- O2 (X, Fo), (5) 

where  | Fo) is a solution of the above sy s t em with ze ro  initial conditions, and | Fo) is its solution 
at zero  t e m p e r a t u r e  | Fo). 

Differentiat ing Eq. (5) with r e s p e c t  to X and substi tut ing the value X = 1 we obtain 

OO(l, Fo) '=  OOx(1, Fo) 00,(1,  Fo) + (6) 
OX OX OX 

We shal l  find each t e r m  in Eq. (6) as a function of ~(Fo) and f(X). 

Let  the function H(X, Fo) desc r ibe  the t e m p e r a t u r e  field of the plate  for a discontinuous unit change 
| Fo) and ze ro  initial  conditions. Then H(X, Fo) is g iven by the fo rmu la  [1, 2]: 

in which 

H(X,  F o ) = I  + 2 Z  (--1)~-- cos%~Xexp(--v2Fo), (7) 
%~a n 

n = l  

2n - -  1 
" % - - ~ z ~ ,  n = l ,  2, ... 

Different iat ing Eq. (7) with r e s pec t  to X, we obtain the express ion  

o| 

OH ox(X' Fo) -~- 2 Z ( -  1)'~+1 sin ~ X exp (-- v] Fo). (8) 
n = :  1 

We subst i tute  the value X = 1 into Eq. (8), and, using the equality 

sin v~ = (--1) n+l, n = l ,  2 . . . . .  

we reduce  it to the fo rm 

OH (1, Fo) 
E exp (--  ~ Fo). (9) 2 

OX 

The s e r i e s  in Eq. (9) converges  uni formly  in the in terva l  (0, oo), and, t he re fo re ,  for  F| > 0 it de t e rmines  
the t r a n s f e r  function with r e s p e c t  toO| Fo) /aX upon pe r tu rba t ion  of the t e m p e r a t u r e  O(1, Fo). 

According to the Duhamel t heo rem,  and taking into account Eq. (9), we can wri te  the des i red  re la t ion  
in the fo rm 

001(1, Fo) 
OX 

F o  

n = l  0 

exp (~n z ~) d T } exp (--  V~ Fo). (lo) 

Here we postulate  that ~o(Fo) is a continuous function, and that r is its initial value.  

We shall  take into account the effect  of the initial conditions (4). Substituting the function | Fo) 
into Eq. (5), we can wri te  it in the fo rm [1, 2] 
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O~ (X, Fo) = 2 cos % X J f (X) cos v .  X dX exp (-- v~ Fo). 
n = l  0 

Dif fe ren t i a t ing  Eq.  (11) with r e s p e c t  to X, and subs t i tu t ing  the va lue  X = 1, we obtain,  

00~. (1, Fo) _ 2 ~ ,  (--1)" v. ~ f (X) cos v,, X dX exp (--  v~ Fo). 
OX ,)  

n = l  0 

1 

z~ (0 )= ( - -1 ) "v .  I f ( X ) c o s % X d X ,  n = l ,  2 . . . . .  

the e x p r e s s i o n  

0 02 (1, Fo) = 2 ~ z. (0) exp (--  ~Fo) .  
OX 

We shal l  des igna te  

and r e w r i t e  Eq.  (12) in the  f o r m  

(11) 

f o r  Fo > 0, 

(12) 

(13) 

We shal l  subs t i tu te  Eqs.  (10) and (13) into Eq. (5), and f inal ly  obtain the r e l a t i o n  we seek  

F o  

{ S 00(1 ,  Fo) _ 2  Z [ Z . ( 0 ) + ~ ( 0 ) ] +  
ox  

tZ~ 1 0 

2 - -  exp (v~x)dz exp( - -v  Fo), (14) 

o r  

r 

0 0  (1, Fo) = 2 ~ z#(Fo) 
OX 

(15) 

whe re  

F o  

z n (Fo) = { [z, (0) -k q~ (0)] + j' ~ (~) exp (v~ x) d �9 } exp (--  v~ Fo), n = l, 2 . . . .  (16) 
0 

Differen t ia t ing  the lef t  and r ight  s ides  of Eq. (16) with r e s p e c t  to Fo,  we obtain an infinite s y s t e m  of 
o r d i n a r y  d i f fe ren t i a l  equat ions  for  de t e rmin ing  zn(Fo) ,  n = 1, 2 , . . . ,  

1 z . (Fo)  + z~(Fo) = 1 v~- v--~- ~ (Fo), n = 1, 2 . . . . .  (17) 

with ini t ial  condit ions zn(O), n = 1, 2 . . . . .  and r 

We shal l  des igna te  

y, (Fo) = qD (Fo) - -  z,, (Fo), n = 1, 2 . . . .  (18) 

Then,  in the new v a r i a b l e s ,  the s y s t e m  of equat ions  takes  the fo rm  

l y~(Fo) q-g,(Fo)  =~(Fo) ,  n = l, 2, (19) 
~ 2  n " ' "  

It can be shown that  the ini t ial  condi t ion of the s y s t e m  (19) will  be as  fol lows:  

1 

yn(O) = --z~(O) = (-- 1)n+1%S f ( X ) e o s % X d X ,  n = I, 2 . . . .  (20) 
0 

It fol lows f rom Eqs.  (15) and (18) tha t  

oo( i ,  Fo) -2 
ax 

Z [q) (Fo) - -  y))(Fo)]. (21) 
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From the boundary condition (2), taking into account Eq. (21), we obtain a formula  for determining 
the function Bi(Fo) 

2 ~ [$ (Fo) - -  g. (Fo)] 

Bi (Fo) = n=,  ( 2 2 )  
% (Fo) - -  ~o (Fo) 

Thus, determinat ion of Bi(Fo) reduces ,  basical ly ,  to integration of Eq. (19) with initial conditions 
(20). 

For a parabolic initial temperature distribution through the plate 

[ (X) = f (0) + [[ (I) -- f (0)l X ~' (23) 

the initial conditions (20) are computed from the formula 

Yn (O) -- f (1)-- 2-~ - [f (1) -- f (0)], n-- I, 2 .... (24) 
n 

Since the function ~o(Fo) is given graphically (it is the temperature of the heated surface as measured 
during heating of the plate), it is convenient to carry out graphical integration by the Bashkirov method, 
which is widely used to investigate control processes in automatic systems [3]. Since all the equations of 
Eq. (19) are of first order with constant coefficients, their integration by the above method is a simple op- 
eration. 

The method does not impose any restriction on the form of the function ~0(Fo). 

Since the time constants in Eq. (19) decrease rapidly with increase of the number n (i/p 2 = 
0.4053; l l u  2 = 0.0450; 1iv 2 = 0.162; l /p ]  = 0.0083; 1/~ 2 = 0.0050; l/V~ = 0.0063), we can r e s t r i c t  our-  
selves to solution of a finite number of these equations without much loss in accuracy .  The required num- 
ber  of differential equations to be calculated is immediately evident upon integration. In pract ice ,  it is 
sufficient to take into account only 2-3 of the f i rs t  equations of Eq. (19). 

Figure 1 gives the resul ts  of determinat ion of Bi, accounting for the f i rs t  two equations of Eq. (19) 
with respec t  to the tempera ture  | Fo) = ~(Fo) of the heated plate surface when the plate heating resul ts  
from a unit stepwise change in the medium tempera ture ,  | = 1, with zero  initial conditions f(X) = 0 and 
Bi = 2, obtained by solving the sys tem of equations (1)-(4). In determining Bi, the t ime instant Fo = 0.4 
will be taken as the initial value. The tempera ture  distr ibution through the wall at this t ime is approximated 
by a parabola.  Figure 1 shows the solution obtained by the Bashkirov method, yt(Fo) and y2(Fo), of the two 

2 

equations considered,  and also shows the differences (ec - cp), (cp - Y0 and ~ (~o - Yn). The fact that 
n ~ l  

curves  1 and 3 a re  close allows us t ode te rmine the  Blot number,  assumed equal to 2.0 in constructing ~(Fo), 
with an accuracy  of 4-5%, which is sufficient for engineering calculations.  

A P P E N D I X  

Let a function | Fo) satisfy Eq. (1) with boundary conditions (2)-(4), and let W(X, Fo) be a solu- 
tion of the equation 

OW(X,  F o )  c)2W(X, Fo) (A.1) 
O Fo OX 2 

with conditions 

W(I, Fo) = 0 (1, Fo), 

OW (1, Fo) O, 
OX 

W(X, 0) = f (X). 

The function | Fo) also evidently sat isf ies the system (A.1)-(A.4). 
the solution of the sys tem,  we conclude that 

0 (X, Fo) ~ W (X, Fo). 

(A.2) 

(A.3) 

(A .4) 

Because of the uniqueness of 

(A.5) 
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Fig. 1. Dete rmina t ion  of the heat  t r a n s f e r  
coefficient:  1) ( |  go); 2) (~o-y l ) ;  3) 

2 

Z (~- yr0. 
n =  I 

Hence we obtain 

or ,  substi tut ing X = i, 

a e (x, Fo) _ at~ (x, Fo) 
OX OX 

(A.6) 

OO(1, Fo) OW(1, Fo) 
o x  ox  (A. 7) 

This  means  that  the der iva t ive  8| Fo)/SX and the function | Fo) a re  in te r re la ted ,  not only by the 
boundary condition (2), but also by the re la t ion  de te rmined  by solution of the sy s t em (A.1)-(A.4) with bound- 
a ry  condition of the f i r s t  kind (A.2). This re la t ion  is given by Eqs. (19), (20)and (21), where  ~o(Fo) = | 
Fo). 

| 

| 
X 

t 
a 

~(t) 
L 
X = x/L 

Fo = a t / L  2 
Bi(Fo) = e(Fo) L/X 

IS 
Is 
is 
Is 
Is 
is 
IS 
is 
IS 
is 
is 

N O T A T I O N  

the t e m p e r a t u r e  of the plate mater ia l ;  
the t e m p e r a t u r e  of the medium; 
a spac ia l  coordinate;  
t ime; 
the t he rm a l  diffusivity; 
the t he rm a l  conductivity; 
the heat  t r a n s f e r  coefficient; 
the plate th ickness;  
a d imens ion less  coordinate; 
the Four ie r  number;  
the Biot number .  

1o 

2. 
3. 
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